Experiments¶
Experiments are the outermost class to control your training, it wraps your NetworkTrainer and provides utilities for cross-validation.
AbstractExperiment¶
-
class
AbstractExperiment
(n_epochs, *args, **kwargs)[source]¶ Bases:
trixi.experiment.Experiment
Abstract Class Representing a single Experiment (must be subclassed for each Backend)
See also
-
kfold
(num_epochs: int, data: delira.data_loading.data_manager.BaseDataManager, num_splits=None, shuffle=False, random_seed=None, train_kwargs={}, test_kwargs={}, **kwargs)[source]¶ Runs K-Fold Crossvalidation The supported scenario is:
passing a single datamanager: the data within the single manager
will be split and multiple datamanagers will be created holding the subsets.
- Parameters
num_epochs (int) – number of epochs to train the model
data (single
BaseDataManager
) – single datamanager (will be split for crossvalidation)num_splits (None or int) – number of splits for kfold if None: 10 splits will be validated per default
shuffle (bool) – whether or not to shuffle indices for kfold
random_seed (None or int) – random seed used to seed the kfold (if shuffle is true), pytorch and numpy
train_kwargs (dict) – keyword arguments to specify training behavior
test_kwargs (dict) – keyword arguments to specify testing behavior
**kwargs – additional keyword arguments (completely passed to self.run())
See also
- :method:`BaseDataManager.update_state_from_dict`
train_kwargs
andtest_kwargs
-
static
load
(file_name)[source]¶ Loads whole experiment
- Parameters
file_name (str) – file_name to load the experiment from
- Raises
NotImplementedError – if not overwritten in subclass
-
run
(train_data: delira.data_loading.data_manager.BaseDataManager, val_data: Optional[delira.data_loading.data_manager.BaseDataManager] = None, params: Optional[delira.training.parameters.Parameters] = None, **kwargs)[source]¶ trains single model
- Parameters
train_data (
BaseDataManager
) – data manager containing the training dataval_data (
BaseDataManager
) – data manager containing the validation dataparameters (
Parameters
, optional) – Class containing all parameters (defaults to None). If not specified, the parameters fall back to the ones given during class initialization
- Raises
NotImplementedError – If not overwritten in subclass
-
save
()[source]¶ Saves the Whole experiments
- Raises
NotImplementedError – If not overwritten in subclass
-
setup
(*args, **kwargs)[source]¶ Abstract Method to setup a
AbstractNetworkTrainer
- Raises
NotImplementedError – if not overwritten by subclass
-
stratified_kfold
(num_epochs: int, data: delira.data_loading.data_manager.BaseDataManager, num_splits=None, shuffle=False, random_seed=None, label_key='label', train_kwargs={}, test_kwargs={}, **kwargs)[source]¶ Runs stratified K-Fold Crossvalidation The supported supported scenario is:
passing a single datamanager: the data within the single manager will be split and multiple datamanagers will be created holding the subsets.
- Parameters
num_epochs (int) – number of epochs to train the model
data (
BaseDataManager
) – single datamanager (will be split for crossvalidation)num_splits (None or int) – number of splits for kfold if None: 10 splits will be validated
shuffle (bool) – whether or not to shuffle indices for kfold
random_seed (None or int) – random seed used to seed the kfold (if shuffle is true), pytorch and numpy
label_key (str (default: "label")) – the key to extract the label for stratification from each data sample
train_kwargs (dict) – keyword arguments to specify training behavior
test_kwargs (dict) – keyword arguments to specify testing behavior
**kwargs – additional keyword arguments (completely passed to self.run())
See also
- :method:`BaseDataManager.update_state_from_dict`
train_kwargs
andtest_kwargs
-
stratified_kfold_predict
(num_epochs: int, data: delira.data_loading.data_manager.BaseDataManager, split_val=0.2, num_splits=None, shuffle=False, random_seed=None, label_key='label', train_kwargs={}, test_kwargs={}, **kwargs)[source]¶ Runs stratified K-Fold Crossvalidation The supported supported scenario is:
passing a single datamanager: the data within the single manager will be split and multiple datamanagers will be created holding the subsets.
- Parameters
num_epochs (int) – number of epochs to train the model
data (
BaseDataManager
) – single datamanager (will be split for crossvalidation)num_splits (None or int) – number of splits for kfold if None: 10 splits will be validated
shuffle (bool) – whether or not to shuffle indices for kfold
random_seed (None or int) – random seed used to seed the kfold (if shuffle is true), pytorch and numpy
label_key (str (default: "label")) – the key to extract the label for stratification from each data sample
train_kwargs (dict) – keyword arguments to specify training behavior
test_kwargs (dict) – keyword arguments to specify testing behavior
**kwargs – additional keyword arguments (completely passed to self.run())
See also
- :method:`BaseDataManager.update_state_from_dict`
train_kwargs
andtest_kwargs
-
test
(params: delira.training.parameters.Parameters, network: delira.models.abstract_network.AbstractNetwork, datamgr_test: delira.data_loading.data_manager.BaseDataManager, trainer_cls=<class 'delira.training.abstract_trainer.AbstractNetworkTrainer'>, **kwargs)[source]¶ Executes prediction for all items in datamgr_test with network
- Parameters
params (
Parameters
) – the parameters to construct a modelnetwork (:class:'AbstractNetwork') – the network to train
datamgr_test (:class:'BaseDataManager') – holds the test data
trainer_cls – class defining the actual trainer, defaults to
AbstractNetworkTrainer
, which should be suitable for most cases, but can easily be overwritten and exchanged if necessary**kwargs – holds additional keyword arguments (which are completly passed to the trainers init)
- Returns
np.ndarray – predictions from batches
list of np.ndarray – labels from batches
dict – dictionary containing the mean validation metrics and the mean loss values
-
PyTorchExperiment¶
-
class
PyTorchExperiment
(params: delira.training.parameters.Parameters, model_cls: delira.models.abstract_network.AbstractPyTorchNetwork, name=None, save_path=None, val_score_key=None, optim_builder=<function create_optims_default_pytorch>, checkpoint_freq=1, trainer_cls=<class 'delira.training.pytorch_trainer.PyTorchNetworkTrainer'>, **kwargs)[source]¶ Bases:
delira.training.experiment.AbstractExperiment
Single Experiment for PyTorch Backend
See also
-
kfold
(num_epochs: int, data: Union[List[delira.data_loading.data_manager.BaseDataManager], delira.data_loading.data_manager.BaseDataManager], num_splits=None, shuffle=False, random_seed=None, train_kwargs={}, test_kwargs={}, **kwargs)[source]¶ Runs K-Fold Crossvalidation The supported scenario is:
passing a single datamanager: the data within the single manager
will be split and multiple datamanagers will be created holding the subsets.
- Parameters
num_epochs (int) – number of epochs to train the model
data (single
BaseDataManager
) – single datamanager (will be split for crossvalidation)num_splits (None or int) – number of splits for kfold if None: 10 splits will be validated per default
shuffle (bool) – whether or not to shuffle indices for kfold
random_seed (None or int) – random seed used to seed the kfold (if shuffle is true), pytorch and numpy
train_kwargs (dict) – keyword arguments to specify training behavior
test_kwargs (dict) – keyword arguments to specify testing behavior
**kwargs – additional keyword arguments (completely passed to self.run())
See also
- :method:`BaseDataManager.update_state_from_dict`
train_kwargs
andtest_kwargs
-
static
load
(file_name)[source]¶ Loads whole experiment
- Parameters
file_name (str) – file_name to load the experiment from
-
run
(train_data: delira.data_loading.data_manager.BaseDataManager, val_data: Optional[delira.data_loading.data_manager.BaseDataManager], params: Optional[delira.training.parameters.Parameters] = None, **kwargs)[source]¶ trains single model
- Parameters
train_data (BaseDataManager) – holds the trainset
val_data (BaseDataManager or None) – holds the validation set (if None: Model will not be validated)
params (
Parameters
) – the parameters to construct a model and network trainer**kwargs – holds additional keyword arguments (which are completly passed to the trainers init)
- Returns
trainer of trained network
- Return type
- Raises
ValueError – Class has no Attribute
params
and no parameters were given as function argument
-
setup
(params: delira.training.parameters.Parameters, **kwargs)[source]¶ Perform setup of Network Trainer
- Parameters
params (
Parameters
) – the parameters to construct a model and network trainer**kwargs – keyword arguments
-
stratified_kfold
(num_epochs: int, data: delira.data_loading.data_manager.BaseDataManager, num_splits=None, shuffle=False, random_seed=None, label_key='label', train_kwargs={}, test_kwargs={}, **kwargs)[source]¶ Runs stratified K-Fold Crossvalidation The supported supported scenario is:
passing a single datamanager: the data within the single manager will be split and multiple datamanagers will be created holding the subsets.
- Parameters
num_epochs (int) – number of epochs to train the model
data (
BaseDataManager
) – single datamanager (will be split for crossvalidation)num_splits (None or int) – number of splits for kfold if None: 10 splits will be validated
shuffle (bool) – whether or not to shuffle indices for kfold
random_seed (None or int) – random seed used to seed the kfold (if shuffle is true), pytorch and numpy
label_key (str (default: "label")) – the key to extract the label for stratification from each data sample
train_kwargs (dict) – keyword arguments to specify training behavior
test_kwargs (dict) – keyword arguments to specify testing behavior
**kwargs – additional keyword arguments (completely passed to self.run())
See also
- :method:`BaseDataManager.update_state_from_dict`
train_kwargs
andtest_kwargs
-
stratified_kfold_predict
(num_epochs: int, data: delira.data_loading.data_manager.BaseDataManager, split_val=0.2, num_splits=None, shuffle=False, random_seed=None, label_key='label', train_kwargs={}, test_kwargs={}, **kwargs)¶ Runs stratified K-Fold Crossvalidation The supported supported scenario is:
passing a single datamanager: the data within the single manager will be split and multiple datamanagers will be created holding the subsets.
- Parameters
num_epochs (int) – number of epochs to train the model
data (
BaseDataManager
) – single datamanager (will be split for crossvalidation)num_splits (None or int) – number of splits for kfold if None: 10 splits will be validated
shuffle (bool) – whether or not to shuffle indices for kfold
random_seed (None or int) – random seed used to seed the kfold (if shuffle is true), pytorch and numpy
label_key (str (default: "label")) – the key to extract the label for stratification from each data sample
train_kwargs (dict) – keyword arguments to specify training behavior
test_kwargs (dict) – keyword arguments to specify testing behavior
**kwargs – additional keyword arguments (completely passed to self.run())
See also
- :method:`BaseDataManager.update_state_from_dict`
train_kwargs
andtest_kwargs
-
test
(params: delira.training.parameters.Parameters, network: delira.models.abstract_network.AbstractPyTorchNetwork, datamgr_test: delira.data_loading.data_manager.BaseDataManager, **kwargs)[source]¶ Executes prediction for all items in datamgr_test with network
- Parameters
params (
Parameters
) – the parameters to construct a modelnetwork (:class:'AbstractPyTorchNetwork') – the network to train
datamgr_test (:class:'BaseDataManager') – holds the test data
**kwargs – holds additional keyword arguments (which are completly passed to the trainers init)
- Returns
np.ndarray – predictions from batches
list of np.ndarray – labels from batches
dict – dictionary containing the mean validation metrics and the mean loss values
-
TfExperiment¶
-
class
TfExperiment
(params: Union[delira.training.parameters.Parameters, str], model_cls: delira.models.abstract_network.AbstractTfNetwork, name=None, save_path=None, val_score_key=None, optim_builder=<function create_optims_default_tf>, checkpoint_freq=1, trainer_cls=<class 'delira.training.tf_trainer.TfNetworkTrainer'>, **kwargs)[source]¶ Bases:
delira.training.experiment.AbstractExperiment
Single Experiment for Tf Backend
See also
-
kfold
(num_epochs: int, data: Union[List[delira.data_loading.data_manager.BaseDataManager], delira.data_loading.data_manager.BaseDataManager], num_splits=None, shuffle=False, random_seed=None, train_kwargs={}, test_kwargs={}, **kwargs)[source]¶ Runs K-Fold Crossvalidation The supported scenario is:
passing a single datamanager: the data within the single manager
will be split and multiple datamanagers will be created holding the subsets.
- Parameters
num_epochs (int) – number of epochs to train the model
data (single
BaseDataManager
) – single datamanager (will be split for crossvalidation)num_splits (None or int) – number of splits for kfold if None: 10 splits will be validated per default
shuffle (bool) – whether or not to shuffle indices for kfold
random_seed (None or int) – random seed used to seed the kfold (if shuffle is true), pytorch and numpy
train_kwargs (dict) – keyword arguments to specify training behavior
test_kwargs (dict) – keyword arguments to specify testing behavior
**kwargs – additional keyword arguments (completely passed to self.run())
See also
- :method:`BaseDataManager.update_state_from_dict`
train_kwargs
andtest_kwargs
-
static
load
(file_name)[source]¶ Loads whole experiment
- Parameters
file_name (str) – file_name to load the experiment from
-
run
(train_data: delira.data_loading.data_manager.BaseDataManager, val_data: Optional[delira.data_loading.data_manager.BaseDataManager], params: Optional[delira.training.parameters.Parameters] = None, **kwargs)[source]¶ trains single model
- Parameters
train_data (BaseDataManager) – holds the trainset
val_data (BaseDataManager or None) – holds the validation set (if None: Model will not be validated)
params (
Parameters
) – the parameters to construct a model and network trainer**kwargs – holds additional keyword arguments (which are completly passed to the trainers init)
- Returns
trainer of trained network
- Return type
- Raises
ValueError – Class has no Attribute
params
and no parameters were given as function argument
-
setup
(params: delira.training.parameters.Parameters, **kwargs)[source]¶ Perform setup of Network Trainer
- Parameters
params (
Parameters
) – the parameters to construct a model and network trainer**kwargs – keyword arguments
-
stratified_kfold
(num_epochs: int, data: delira.data_loading.data_manager.BaseDataManager, num_splits=None, shuffle=False, random_seed=None, label_key='label', train_kwargs={}, test_kwargs={}, **kwargs)[source]¶ Runs stratified K-Fold Crossvalidation The supported supported scenario is:
passing a single datamanager: the data within the single manager will be split and multiple datamanagers will be created holding the subsets.
- Parameters
num_epochs (int) – number of epochs to train the model
data (
BaseDataManager
) – single datamanager (will be split for crossvalidation)num_splits (None or int) – number of splits for kfold if None: 10 splits will be validated
shuffle (bool) – whether or not to shuffle indices for kfold
random_seed (None or int) – random seed used to seed the kfold (if shuffle is true), pytorch and numpy
label_key (str (default: "label")) – the key to extract the label for stratification from each data sample
train_kwargs (dict) – keyword arguments to specify training behavior
test_kwargs (dict) – keyword arguments to specify testing behavior
**kwargs – additional keyword arguments (completely passed to self.run())
See also
- :method:`BaseDataManager.update_state_from_dict`
train_kwargs
andtest_kwargs
-
stratified_kfold_predict
(num_epochs: int, data: delira.data_loading.data_manager.BaseDataManager, split_val=0.2, num_splits=None, shuffle=False, random_seed=None, label_key='label', train_kwargs={}, test_kwargs={}, **kwargs)[source]¶ Runs stratified K-Fold Crossvalidation The supported supported scenario is:
passing a single datamanager: the data within the single manager will be split and multiple datamanagers will be created holding the subsets.
- Parameters
num_epochs (int) – number of epochs to train the model
data (
BaseDataManager
) – single datamanager (will be split for crossvalidation)num_splits (None or int) – number of splits for kfold if None: 10 splits will be validated
shuffle (bool) – whether or not to shuffle indices for kfold
random_seed (None or int) – random seed used to seed the kfold (if shuffle is true), pytorch and numpy
label_key (str (default: "label")) – the key to extract the label for stratification from each data sample
train_kwargs (dict) – keyword arguments to specify training behavior
test_kwargs (dict) – keyword arguments to specify testing behavior
**kwargs – additional keyword arguments (completely passed to self.run())
See also
- :method:`BaseDataManager.update_state_from_dict`
train_kwargs
andtest_kwargs
-
test
(params: delira.training.parameters.Parameters, network: delira.models.abstract_network.AbstractNetwork, datamgr_test: delira.data_loading.data_manager.BaseDataManager, **kwargs)[source]¶ Executes prediction for all items in datamgr_test with network
- Parameters
params (
Parameters
) – the parameters to construct a modelnetwork (:class:'AbstractPyTorchNetwork') – the network to train
datamgr_test (:class:'BaseDataManager') – holds the test data
**kwargs – holds additional keyword arguments (which are completly passed to the trainers init)
- Returns
np.ndarray – predictions from batches
list of np.ndarray – labels from batches
dict – dictionary containing the mean validation metrics and the mean loss values
-