Logo
master

Getting Started

  • Getting started
    • Backends
    • Installation

Tutorials:

  • Delira Introduction
    • Loading Data
      • The Dataset
      • The Dataloader
      • The Datamanager
      • Sampler
    • Models
      • __init__
      • closure
      • prepare_batch
    • Abstract Networks for specific Backends
      • PyTorch
        • forward
        • prepare_batch
        • closure example
      • Other examples
    • Training
      • Parameters
      • Trainer
      • Experiment
    • Logging
      • MultiStreamHandler
      • Logging with Visdom - The trixi Loggers
    • More Examples
  • Classification with Delira - A very short introduction
    • Logging and Visualization
    • Data Preparation
      • Loading
      • Augmentation
    • Training
    • See Also
  • Generative Adversarial Nets with Delira - A very short introduction
    • HyperParameters
    • Logging and Visualization
    • Data Preparation
      • Loading
      • Augmentation
    • Training
    • See Also
  • Segmentation in 2D using U-Nets with Delira - A very short introduction
    • Logging and Visualization
    • Data Praparation
      • Loading
      • Augmentation
    • Training
    • See Also
  • Segmentation in 3D using U-Nets with Delira - A very short introduction
    • Logging and Visualization
    • Data Praparation
      • Loading
      • Augmentation
    • Training
    • See Also
  • How To: Integrate your own Computation Backend
    • Model Definitions
      • TorchScript Limitations
      • Merging TorchScript into our Abstract Class
      • Actual Implementation
        • Class Signature and __init__-Method
        • __call__-Method
        • closure-Method
        • prepare_batch-Method
        • forward-Method
        • Putting it all together
    • Saving and loading
      • Saving
      • Loading
    • A Trainer to train
      • Things to change:
        • The Default Arguments
        • Resuming Training
        • Saving and Loading
      • A Whole Trainer
    • Wrapping it all in an Experiment
    • Testing it

API Documentation:

  • API Documentation
    • Delira
      • Data Loading
        • Arbitrary Data
        • Nii
        • Sampler
      • IO
      • Logging
      • Models
        • Chainer
        • SciKit-Learn
        • TensorFLow Eager Execution
        • TensorFlow Graph Execution
        • PyTorch
        • TorchScript
      • Training
        • Parameters
        • Network Trainer
        • Predictor
        • Experiment
        • Backends
        • Callbacks
        • Losses
        • Metrics
        • Utilities
      • Utilities
      • Backend Resolution
      • Debug Mode
      • Class Hierarchy Diagrams
  • GitHub
delira
  • Docs »
  • delira - A Backend Agnostic High Level Deep Learning Library
  • Edit on GitHub

delira - A Backend Agnostic High Level Deep Learning Library¶

Getting Started

  • Getting started
    • Backends
    • Installation

Tutorials:

  • Delira Introduction
    • Loading Data
    • Models
    • Abstract Networks for specific Backends
    • Training
    • Logging
    • More Examples
  • Classification with Delira - A very short introduction
    • Logging and Visualization
    • Data Preparation
    • Training
    • See Also
  • Generative Adversarial Nets with Delira - A very short introduction
    • HyperParameters
    • Logging and Visualization
    • Data Preparation
    • Training
    • See Also
  • Segmentation in 2D using U-Nets with Delira - A very short introduction
    • Logging and Visualization
    • Data Praparation
    • Training
    • See Also
  • Segmentation in 3D using U-Nets with Delira - A very short introduction
    • Logging and Visualization
    • Data Praparation
    • Training
    • See Also
  • How To: Integrate your own Computation Backend
    • Model Definitions
    • Saving and loading
    • A Trainer to train
    • Wrapping it all in an Experiment
    • Testing it

API Documentation:

  • API Documentation
    • Delira
      • Data Loading
        • Arbitrary Data
          • Dataset
          • Dataloader
          • Datamanager
          • Utils
        • Nii
        • Sampler
      • IO
      • Logging
      • Models
        • Chainer
        • SciKit-Learn
        • TensorFLow Eager Execution
        • TensorFlow Graph Execution
        • PyTorch
        • TorchScript
      • Training
        • Parameters
        • Network Trainer
        • Predictor
        • Experiment
        • Backends
          • Chainer
          • SciKit-Learn
          • TensorFlow Eager Execution
          • Tensorflow Graph Execution
          • PyTorch
          • TorchScript
        • Callbacks
        • Losses
        • Metrics
        • Utilities
      • Utilities
      • Backend Resolution
      • Debug Mode
      • Class Hierarchy Diagrams
  • GitHub

Indices and tables¶

  • Index

  • Module Index

  • Search Page

Next

© Copyright 2019, Justus Schock, Michael Baumgartner, Oliver Rippel, Christoph Haarburger Revision 3b7794be.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: master
Versions
stable
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0-beta.1
master
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.